Probabilistic Models of Object Geometry for Grasp Planning

نویسندگان

  • Jared Glover
  • Daniela Rus
  • Nicholas Roy
چکیده

Robot manipulators generally rely on complete knowledge of object geometry in order to plan motions and compute successful grasps. However, manipulating real-world objects poses a substantial modelling challenge. New instances of known object classes may vary from learned models. Objects that are not perfectly rigid may appear in new configurations that do not match any of the known geometries. In this paper we describe an algorithm for learning generative probabilistic models of object geometry for the purposes of manipulation; these models capture both non-rigid deformations of known objects and variability of objects within a known class. Given a single image of partially occluded objects, the model can be used to recognize objects based on the visible portion of each object contour, and then estimate the complete geometry of the object to allow grasp planning. We provide two main contributions: a probabilistic model of shape geometry and a graphical model for performing correspondence between shape descriptions. We show examples of learned models from image data and demonstrate how the learned models can be used by a manipulation planner to grasp objects in cluttered visual scenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Procrustean Models for Shape Recognition with an Application to Robotic Grasping

Robot manipulators largely rely on complete knowledge of object geometry in order to plan their motion and compute successful grasps. If an object is fully in view, the object geometry can be inferred from sensor data and a grasp computed directly. If the object is occluded by other entities in the scene, manipulations based on the visible part of the object may fail; to compensate, object reco...

متن کامل

Bayesian Grasp Planning

We present a Bayesian framework for grasp planning that takes into account uncertainty in object shape or pose, as well as robot motion error. When trying to grasp objects based on noisy sensor data, a common problem is errors in perception, which cause the geometry or pose of the object to be uncertain. For each hypothesis about the geometry or pose of the object to be grasped, different sets ...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Passive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...

متن کامل

Probabilistic Approach to Sensor-based Grasping

In this paper, we present a probabilistic framework for grasping. In the framework, we consider grasp and object attributes, on-line sensor information and the stability of a grasp, through probabilistic models. We describe how sensorbased grasp planning can be formulated in a probabilistic framework and how information about object attributes can be updated simultaneously using on-line sensor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008